Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 435: 128963, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35486999

RESUMO

Persulfate (PS)-based chemical oxidation is an effective method for the remediation of petroleum-contaminated soils, but higher concentrations of PS (3-40%) may lead to soil acidification (pH decreased by 1.8-6.2 units) and affect the microbial communities. In this study, Fe/N co-doped carbonaceous nanocomposites (Fe-N @ CN) that can efficiently activate PS were developed from biogas residue for the remediation of petroleum-contaminated soil. The as-obtained Fe-N@CN displayed that the Fe-based nanoparticles were encapsulated in graphitic nanosheets, with Fe3C and FeN0.0760 as the main bonding modes. The removal efficiency of total petroleum hydrocarbons (TPHs) reached 73.14% in 3 days with a PS dose of 2% and catalyst dose of 0.4%, and increased by 15.8% on adding 30 mmol/kg of ß-cyclodextrin. The free-radical quenching experiment and electron paramagnetic resonance revealed that SO4·-,·OH, O2·-, and 1O2 were involved in the removal of TPHs. Because of the low PS dosage, the remediation process had no significant effect on the soil pH. During the remediation process, soil catalase activity was enhanced and then recovered, whereas the soil bacterial community, reflected by the operational taxonomic unit values, decreased and then recovered. TPH-degrading bacteria were produced in the Fe-N@CN/PS/soil system after chemical oxidation, further contributing to soil remediation.


Assuntos
Nanocompostos , Petróleo , Poluentes do Solo , Bactérias , Biodegradação Ambiental , Biocombustíveis , Hidrocarbonetos/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...